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In times of ubiquitous measurement and data, more and more decisions are based on multivariate observational 
data. Conclusions based on such data are easily flawed, as the rather simple paradoxes of Simpson and Berkson 
show. Therefore, it seems necessary to integrate elements of causal inference into the curriculum to help 
students to think beyond data and beyond the mantra of "correlation is not causation". Based on qualitative 
assumptions about the data generating process, potential omitted variables or selection bias can be made visible 
by means of directed acyclic graphs. The same holds true for the difference in the joint distribution depending on 
whether data are observational or from a randomized experiment. In introductory statistics courses, students 
should learn to distinguish the different levels of causal inference as well as to decide whether to adjust or not to 
adjust for a covariable. 
 
MOTIVATION 

For some time now there has been a call to focus on data (rather than mathematics) in introductory 
statistics courses (e.g. Cobb & Moore, 1997). GAISE (2016) and ProCivicStat (2018) motivate the use of real, 
complex, and multivariate data as well as technology to explore such data. We agree with these claims! But data 
is not just “there”. Data are not just numbers with a context (Cobb & Moore, 1997), moreover data have a 
generating process and this process enables and limits the conclusions (and actions) we can and should take from 
the analysis of data. In the univariate world this thinking was most often limited to some kind of distributional 
assumptions. Of course, topics like the importance of random sampling and/or random allocation in experiments, 
usually also covered in introductory courses, are also part of the data generating process – and closely connected 
to the validity of statistical inference. But due to e.g. digitization there are more and more multivariate 
observational data, most often generated neither by random sampling nor random allocation, and with that 
vulnerable to several kinds of biases and confounding. So, within the emerging role of multivariate thinking in 
inferential reasoning, we think that statistical education should enable students to articulate (and formalize) 
qualitative assumptions in the framework of causal modeling. 

The basic ideas of causal inference, like Directed Acyclic Graphs, the difference between observing and 
manipulating data, and counterfactual evaluation may foster a deeper understanding of what can and – maybe 
even more importantly – what cannot be deduced by (observational) data analysis and so may help to refrain 
from naive conclusions based on "Big-Data" analysis. 

In a changing world, where statistical education aims at Data Literacy (e.g. Gould, 2017), now is the 
time (and need) for a fundamental rethinking of the curriculum (Cobb, 2015). The curriculum reform towards 
statistical thinking (e.g. Steel et al., 2019) and conceptual understanding by means of e.g. simulation based 
inference (e.g. Chance et al., 2016), data modeling (e.g. Stigler & Son, 2018), and integration of technology (e.g. 
Nolan & Temple Lang, 2010) offer a  chance so that we concur with Hernán et al. (2019): “We now have a 
historic opportunity to redefine data analysis in such a way that it naturally accommodates a science-wide 
framework for causal inference from observational data.” Cummiskey et al. (2020) also argue that causal 
inference fits well into the current guidelines for introductory courses. This means that the classical introductory 
statistics course is reshaped towards data literacy. I. e., some (mathematical) statistical topics are reduced and 
causal inference is added to the curriculum. It should be noticed, however, that many statistical methods (means, 
medians, boxplot, inference, etc.) are now covered in school.  

 
A SHORT INTRODUCTION TO CAUSAL INFERENCE 

There are different approaches to and of causality which we will not discuss here. For good 
introductions to the Potential Outcomes Framework or Directed Acyclic Graphs (DAGs) we refer to e.g. Angrist 
& Pischke (2014) or Pearl, Glymour & Jewell (2016).  

Pearl (2019) distinguishes three levels of causal inference:  
• Association: P(y|x): Seeing: what is?, i.e., the probability of Y = y given that we observe X = x. 
• Intervention: P(y|do(x)): Manipulation: what if?, i.e., the probability of Y = y given that we intervene 

and set the value of X to x. 
• Counterfactuals: P(yx|x0, y0): Imagining: what if I had acted differently?, i.e., the probability of Y = y if 

X had been x given that we actually observed x0, y0.  
 
In order to take the best action, i.e., maybe an intervention (do(x)), as requested by a data literate 

individual (e.g. Gould, 2017), she must estimate the effect on y. But without taking the causal model of the data 
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generating process into account, such a conclusion is easily flawed as the famous paradoxes by Simpson and 
Berkson show. DAGs can make the assumptions visible and help answer if and how such a causal effect can be 
estimated from data. 

Basic elements are chains (X → C → Y), forks (X ← C → Y), and colliders (X → C ← Y): The 
expected change in Y resulting of a change of X is unconditional of C for a chain or a collider and it is 
conditional of C in case of a fork. So, by adjustment (e.g. by integration of a covariable C in a linear model) or 
not-adjustment (e.g. exclusion of C) one wants to block non-causal paths, not to open spurious paths, and to open 
causal paths. 

For example, consider the data set discussed by Dick DeVeaux in his Stat 101 case study “How Much is 
a Fireplace Worth?” (https://community.amstat.org/stats101/home): Unconditionally, i.e., not adjusted for house 
size, a fireplace is worth $65000. But as the existence of a fireplace is associated with house size, the marginal 
effect goes down to $5560. Assuming that the price depends on house size and fireplace and that the existence of 
a fireplace depends on the house size, i.e. a model like in Figure 1, students can see that the path from fireplace 
(X) to price (Y) via house size (C) is non-causal (a “backdoor”) so in order to estimate the effect based on this 
model one should use the effect adjusted for house size. Drawing causal diagrams like Figure 1 helps thinking 
about possibly omitted variables or selection bias.  Note however that in real-life the DAG should include all 
possible observable or not-observable factors. 

   
 

Figure 1.  Simplified Directed Acyclic Graph of “How Much is a Fireplace Worth?”   
 

Simulated as well as real-life examples suitable for introductory courses are available (Lübke et al., 
2020). Here, in all examples the causal effect of X on Y is investigated. For a chain, we use the simulated and 
simplified example that learning (X) effects knowing (C) and knowing causes understanding (Y). In the first 
example, adjusting for C (using it as covariable in a linear regression model explaining Y) would result in a 
small effect for X, only. But this is not true as Y is only conditionally independent given C. One must leave out 
C to get the real effect of X on Y. 

Another simulated example uses intelligence (C) which reduces learning time (X) and increases test 
score (Y). If one wants to reveal the true effect of X on Y then one must adjust for C. C is a fork as given in the 
example above (“How Much is a Fireplace Worth?”), both are examples for the Simpson’s paradox. 

The last element, a collider, is simulated via ability to network (X), competence (Y), and promotion (C). 
X and Y are independent, but promotion depends on both. Adjusting for C (adding it to the linear model) would 
result in a bias (spurious regression between X and Y) and, therefore, would give incorrect results. This is an 
example of Berkson’s paradox. 

All three simulated examples can easily be demonstrated via linear models (regression) and are 
straightforward to be followed by the students. As such, this helps students to understand causal effects, (linear) 
modelling, and how much this depends on the data generating process. Additionally, the effect of an 
experimental setup to study causal effects can be demonstrated with the simulated examples as well. 

For real-life examples we use e.g. the Saratoga House data set (the data set also used in the Stat 101 
case study mentioned above). The price of a house could be modelled by number of bedrooms. But this would 
not result in the true price as the size of the house is missing. The size has a direct effect on the price and an 
indirect effect via number of bedrooms, therefore it has to be considered as a fork and needs to be adjusted for. 

Another real-life example is the case presented by Cummiskey (2019) (see also Cummiskey et al., 
2020) which investigates the effect of teenage smoking on lung function. The height of the teenager is on the 
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causal path between smoking and forced expiratory volume, constituting a chain. To find the correct effect of 
smoking on lung function one must not adjust for height. 

 
INTEGRATION INTO THE SYLLABUS 

With the beginning of winter term 2019/2020 the topics covered in our courses called “Scientific 
Research Methods – Quantitative Data Analysis” for students studying a bachelor’s degree in business 
administration with 8 ECTS (European Credit Transfer and Accumulation System, which allows students to 
transfer study results within Europe) points. There are no specific prerequisites, just the normal higher education 
entrance qualification is needed. The course is organized as follows: 
 

• Background: Science 
• Foundations of Quantitative Data Analysis 
• Introduction to R 
• Exploratory Data Analysis 
• Linear Regression 
• Introduction to Statistical Inference 
• Introduction to Causal Inference (pilot test) 

 
It should be noted that our students are studying while working and that the ability to produce statistical 

results (Gould, 2010) is a learning outcome according to the curriculum. The technology used to teach these 
topics, integrated in the statistical-inquiry cycle (Wild & Pfannkuch, 1999) as well as Data Science pipeline (e. g. 
Wickham & Grolemund, 2017) are R mosaic (Pruim et al., 2017), interactive shiny apps (e.g. Doi et al., 2016) as 
well as learnr tutorials (Schloerke et al., 2019). Case studies (e.g. Neumann et al., 2013) as well as quizzes (e.g. 
McGowan & Gunderson, 2010) are also integrated as well as reproducible analysis via R Markdown (Baumer et 
al., 2014). 

In the lecture “Background: Science” students are introduced to concepts like internal and external 
validity as these are fundamental for drawing conclusions based on data. Here also the data modelling theme 
Data = Model + Rest is introduced. These topics are repeated and connected to (random) sampling and 
(randomized) experiments in the “Foundations of Quantitative Data Analysis”.  The data modelling theme is 
iterated via the R formula Y ~ X in the “Introduction to R”, “Exploratory Data Analysis”, and “Linear 
Regression” lectures. Statistical Inference, i.e., estimation and testing is introduced informally via bootstrapping 
and permutation in the “Linear Regression” lectures but formally defined – and connected to sampling, 
experiments as well as internal and external validity in the “Introduction to Statistical Inference” lectures. 

All these fundamental topics are re-iterated and rounded up in the last, new block about “Introduction to 
Causal Inference”: Using DAGs and simple simulated examples with (multiple) linear regression, we show how 
convenience sampling can introduce bias and how randomized experiments avoid confounding. 

By a framework to think about the (multivariate) data generating process using DAGs we hope to 
develop key ideas and skills related to multivariate thinking. Mainly, these are knowing how confounding and 
bias arise so that paradoxes like Simpson’s and Berkson’s are better understood. 
 
EVALUATION 

The desired learning outcomes are two-fold: improved knowledge about conclusions based on data and 
attitude towards statistics and data.  

We have already started a survey (also among data science practitioners) where participants are asked 
about their conclusion about the effect of an intervention based on the usual regression output, with and without 
the corresponding DAG. Here, we are interested in finding out how many respondents erroneously draw causal 
conclusions from regression results, and how this number changes when the DAG that enables such a conclusion 
is given. The structure of our university with 29 study centers allows us to compare results obtained from 
students who have already learnt about causal inference with those to whom causal inference has not yet been 
taught. 

 Currently we are designing a study to evaluate the effect on post course value of statistics, see e.g. 
Schield (2018) for current problems. As in the survey referred to earlier, this should be done by means of quasi-
experimental results for those who learn about causal inference in comparison with those who do not.  

 
CONCLUSION 

The Guidelines for Assessment and Instruction in Statistics Education (GAISE, 2016) recommend to 
"Teach statistical thinking" by "Teach[ing] statistics as an investigative process of problem-solving and decision-
making" and to "Give students experience with multivariate thinking" and also "Integrate real data with a context 
and purpose". Similar ideas include the aim to focus on modelling (e.g. Stigler & Son, 2018) and to support 
students "to think with data" (Pruim et al., 2017). 
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However, multivariate modelling can be misled through the presence of confounding. Given the 
ubiquitous presence of data in current times and the fact that the field of applied statistics has changed a lot since 
Fisher's days, we think that today's students should learn to think even more thoroughly about the data 
generating process in order to draw conclusions from data. 

Through the "Focus on conceptual understanding" (GAISE, 2016) by teaching techniques such as 
simulation-based inference (bootstrapping, permutation test) and by de-emphasizing more traditional inference 
techniques, some free time is gained during the curriculum. Therefore, our proposed curriculum places data and 
context in the main focus. We agree with Wild et al. (2018): “The mission of statistics education is to provide 
conceptual frameworks (structured ways of thinking) and practical skills to better equip our students for their 
future lives in a fast-changing world.“ We think that DAGs can help developing such frameworks in the 
emerging role of multivariate thinking in inferential reasoning. With a focus on the statistical inquiry cycle in a 
holistic manner, data modelling, simulation-based inference, and the usefulness of technology, a consistent and 
integrated curriculum as well as active learning is possible. The syllabus has been reshaped towards the aim of 
multivariate thinking within the statistical-inquiry cycle.  

However, teachers of such courses need to refocus and maybe minimize or omit other topics (GAISE, 
2016). These losses must also be considered. In an ideal world for statistical education, we would have enough 
time to cover all our topics, but in the meantime we have to decide what to focus on – and to consider the 
opportunity costs associated with our decision (Cobb, 2007).  As most of today's lecturers have not learned 
causal inference for themselves, training resources are required.  Nevertheless, the notion of integrating causal 
modelling in introductory statistics is supported by many, e.g. Ridgway (2016), Angrist & Pischke (2017), 
Kaplan (2018), Hernán et al. (2019), Cummiskey et al. (2020), and the ASA “Causality in Statistics Education 
Award”. 
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